Sustainable Technology: Daylighting

Jan. 1, 2009

Measuring Daylighting's HVAC andLighting Energy-Savings Efficiency

By Craig DiLouie 

Daylighting is a recognized best practice in energy codes and industry standards due to its documented positive effects on worker satisfaction and performance, as well as its potential to generate substantial energy savings. Daylighting and daylighting control are now encouraged or required by California's Title 24 energy code, LEED-NC v.2.2, Northeast Collaborative for High Performance Schools, and ASHRAE's Advanced Energy Design Guide for Small Office Buildings. At press time, ASHRAE 90.1-2010 and 189.1 standards are expected to include requirements for daylighting controls.

While the benefits of daylighting and daylighting control are clear, demonstrated savings vary widely based on many factors.

The New Buildings Institute, located in White Salmon and Vancouver, WA, states daylight harvesting systems can generate maximum potential savings of 35 to 60 percent. The Seattle-based Lighting Design Lab states lighting energy savings can reach 60 to 80 percent in offices, classrooms, and gymnasiums. According to the U.S. Department of Energy, Washington, D.C., daylight-response switching, coupled with skylights, has demonstrated energy savings in warehouses of 30 to 70 percent.

And that's not counting HVAC impacts.

One of the challenges in estimating typical savings is that it's difficult to compare high-performance daylighting and glazing strategies against standard designs because of the numerous differences between buildings. How do we know realized energy savings are due to the daylighting strategy and not some other factor such as building orientation?

To address this question, the Energy Center of Wisconsin conducted a controlled experiment at the Energy Resource Station near Des Moines, IA. Two sets of four identical rooms provided the comparison testbed, with each supplied by independent lighting and HVAC systems. One set of rooms (the test rooms) were configured with high-performance glazing and direct/indirect light fixtures with daylighting dimming control. The other set of rooms (the control rooms) were configured with standard clear-glass glazing and recessed fluorescent fixtures with no photosensors or dimming control.

This enabled a direct comparison of lighting and HVAC energy consumption during three rounds of study conducted during the summer, fall, and winter of 2003 - a total of 70 days of operation. The study was based on three conditions: the base case described; reduced fenestration (simulated by the use of exterior panels to partially cover the windows); and the addtion of an interior light shelf to enable deeper penetration of daylight into the room interior. The Energy Center of Wisconsin measured lighting and HVAC energy savings exceeding 20 percent, based on operating costs of approximately $1.13/square foot.

Lighting energy savings were determined to be about one-third, or 32 percent, based on 15 cents/square foot annual operating costs for the test rooms, compared to 22 cents/square foot for the control rooms. The result was 7 cents/square foot savings per year. Cooling energy savings were measured at 25 percent, fan energy savings at 3 percent, and savings in demand charges at 24 percent, while heating energy increased marginally.

The test room fixtures frequently operated at some level of reduced output - around 50 percent on sunny days. The biggest operating cost savings - about two-thirds - resulted, however, from lower cooling loads. About one-half were related to reduced demand charges.

The researchers conclusion: "The data from this experiment demonstrate clear and substantial reductions in lighting and HVAC energy consumption due to the lighting and window specifications."

Craig DiLouie ([email protected]), a lighting industry journalist, analyst, and marketing consultant, is principal of ZING Communications.

Voice your opinion!

To join the conversation, and become an exclusive member of I+S Design, create an account today!